Genelec Immersive Solutions

A Perceptive Perspective ... 4
Immersive Audio: The Background and The Formats 6
Research and Experimental Systems 8
Genelec Immersive Room Solutions 10
GLM Software: Configuration,
Calibration and Control for Immersive Systems 14
In-Room Product Performance 15
Our Range of Monitors .. 17
Hearing the world around us is so natural that we often only notice its importance once the ability is lost. Most of the time, a loss is fortunately temporary - for instance caused by a cold - but a one-side hearing loss is more stressful and depressing than we generally tend to believe.

One of the first things a baby does is to localise, quickly and automatically turning eyes towards a sound. Growing up, we further learn and refine localisation using a system under construction. Ear canals and other structures of the outer ear, known as pinnae, grow and reshape, constantly modifying spherical hearing, as we reach out and experience a fascinating world in return.

Sound is coloured by the pinnae, depending on its direction of arrival – known as azimuth. Expert listeners constantly use this feature in combination with head movements; not only when evaluating immersive content, but also to distinguish direct sound from room reflections.

The ability to position sounds spherically with precision is a key benefit of immersive audio. Another is the possibility to influence the sense of space in human listeners. For the latter, the frequency range between 50 and 200 Hz - which constitutes the lowest two octaves of the interaural time difference (ITD) range - plays an essential role, but is often compromised by the reproduction system.

A well-aligned loudspeaker system in a great room has the best chance of translating well to a variety of immersive playback situations, including headphones. The sound designer is able to make full use of outer ear features and head movements, and to work for long hours with reduced listener fatigue and “cybersickness”.

SHARPEN YOUR SENSES
An immersive audio experience is created by employing playback with more loudspeakers than a traditional surround system. Loudspeakers are located around the listener at ear level, but crucially also positioned above or below the listener, so called “layers”. Layers may or may not be reflected in format names, so the same setup could be labelled, for example, 11.1 or 7.1.4 depending on manufacturer or country. In either case that system would have 11 discrete main channels and one LFE channel.

The only reliable way to ensure reference-quality immersive monitoring is to adjust all monitors after placement for level, time-of-flight and frequency response. This is easy to do with a Genelec system; please refer to page 14’s overview of Genelec Loudspeaker Manager (GLM) software.

Benefits of Genelec Immersive Monitoring Systems:

- Neutral and uncoloured sound, both on and off axis.
- A wide range of loudspeaker and subwoofer sizes, meaning that we can offer scalable systems for all room formats, from small OB vans to large dubbing theatres.
- All monitors in this brochure tightly integrate with the GLM software (included) to enable precise system calibration. GLM doubles as an integrated monitor controller.
- We provide versatile mounting options for easy positioning and aiming of loudspeakers.
- Rugged build quality, sustainably manufactured with bulletproof reliability.

Dolby Atmos

Launched in 2012, Dolby Atmos is a widely supported object-based system with up to 128 individual tracks and 64 speaker feeds.

- Two layer system with both surround and height channels.
- Up to 7.1.4 channel home reproduction.
- Up to 21.1.10 channel cinema reproduction.

Auro-3D

Introduced in 2006, Auro-3D is a channel-based three layer system which comes in a variety of formats.

- Three layer system with surround, height and VoG channels.
- Typical formats from 7.1.2 to 7.1.6.
- Object-based ‘AuroMax’ extension for additional channels.

DTS-X

DTS-X was launched in 2015. Like Dolby Atmos, it’s an object-based system – but without prescribed speaker configurations.

- Two layer system with surround and height channels.
- Audio rendering based on number and position of speakers available.
- Supports up to 32 speaker locations and 7.2.4 channels.

MPEG-H 3D

Developed by Fraunhofer, Technicolor and Qualcomm, MPEG-H 3D is an audio coding standard supporting up to 64 loudspeaker channels and 128 codec core channels.

- Scalable architecture allows flexibility in number of channels.
- Audio channels, audio objects, or higher order ambience (HOA).
- Objects may be used alone or in combination with channels or HOA components.

ITU-R and Pure Research

ITU-R is researching the requirements for realistic 3D sound for UHDTV. Pure research is focused on in-room and binaural sound with and without movement.

- At least three vertical layers and one or more sub.
- Typically between 11 and 60 main channels.
- ITU-R is collaborating with NHK (Japan), SMPTE (USA) and EBU (Europe).
Research and Experimental Systems

Around the world, academic institutions and commercial organisations are engaged in extensive immersive audio research; an explosion driven by new hi-spatial distribution formats, and promises of commercial return for the first companies to solve the challenges of credible personal (binaural) delivery.

Satisfactory binaural delivery for film, gaming and VR does not rely only on presenting sources with azimuth, but also the reflections we always hear under natural conditions. Direct sound and reflections furthermore have to be rendered specifically for each individual listener, including real-time head and body movements. The processing burden on a binaural reproduction system is therefore significant, and the data it is built on must be as accurate as possible.

A fine immersive experimental system is at the heart of any subjective test and data gathering. In this respect, Genelec point source monitors, known as “The Ones”, are in their own category entirely. By avoiding the colouration of direct sound and reflections, which is not possible with a conventional monitor design, the most serious obstacle in immersive research is avoided. Not surprisingly, there has been a surge in microphone production and immersive studies based on The Ones.

For research where the requirement for ideal directivity in both planes is less pronounced, the range of Genelec models to choose from is wider. While a selection of these models appears within this brochure, please visit www.genelec.com for the full range, and notice how the benefits of GLM in-situ adjustments are available to all Genelec SAM monitors and subwoofers.

Picture right: Applied Psychoacoustics Laboratory, University of Huddersfield, UK. Photo courtesy of Dr. Hyunkook Lee
Genelec Immersive Room Solutions

Compact 7.1.2
Application: OB truck or research installation
Typical listening distance: 0.7 m
Suggested Genelec System:
- **Main LCR**: 3 x 8330 or 8331
- **Surround**: 4 x 8330 or 8331
- **Ceiling**: 2 x 8330 or 8331
- **Subwoofer (LFE)**: 1 x 7360

Mounting Accessories:
- 4 x 8000-420 short wall mount
- 2 x 8000-436 short ceiling mount

Cabling:
- Analog or digital, e.g. 10 x AES/EBU XLR cables

Small 7.1.2
Application: broadcast or continuity studio
Typical listening distance: 1.2 m
Suggested Genelec System:
- **Main LCR**: 3 x 8340 or 8341
- **Surround**: 4 x 8330 or 8331
- **Ceiling**: 2 x 8331 or 8341
- **Subwoofer (LFE)**: 1 x 7370

Mounting Accessories:
- 4 x 8000-402 adjustable wall mount
- 4 x 8000-436 short ceiling mount

Cabling:
- Analog or digital, e.g. 12 x AES/EBU XLR cables

Small 7.1.4
Application: broadcast or post production studio
Typical listening distance: 2.0 m
Suggested Genelec System:
- **Main LCR**: 3 x 8351
- **Surround**: 4 x 8350 or 8351
- **Ceiling**: 4 x 8341
- **Subwoofer (LFE)**: 1 x 7380

Mounting Accessories:
- 4 x 8000-402 adjustable wall mount
- 4 x 8000-436 short ceiling mount

Cabling:
- Analog or digital, e.g. 13 x AES/EBU XLR cables

Medium 7.1.4
Application: post production or film commercial studio
Typical listening distance:
- 3.0 m front, 1.5 m others
Suggested Genelec System:
- **Main LCR**: 3 x 8300
- **Surround**: 4 x 8341
- **Ceiling**: 4 x 8341
- **Subwoofer (LFE)**: 2 x 7380

Mounting Accessories:
- 4 x 8000-420 short wall mount
- 2 x 8000-436 short ceiling mount

Cabling:
- Analog or digital, e.g. 10 x AES/EBU XLR cables
Medium 11.1.4
Application: post production or film commercial studio
Typical listening distance: 4.0 m front, 2.5 m others
Suggested Genelec System:
- Main LCR: 3 x 1234A/DF/AC
- Surround: 8 x S360
- Ceiling: 8 x 8361 or 6501
- Subwoofer (LFE): 1 x 7382

Large 13.1.8
Application: film mixing stage
Typical listening distance: 5.0 m front, 3.0 m surround, 2.5 m ceiling
Suggested Genelec System:
- Main LCR: 3 x 1334A or 1334AC
- Surround: 16 x S360
- Ceiling: 8 x 8361
- Subwoofer (LFE): 2 x 7362

Large 19.1.12
Application: film mixing stage
Typical listening distance: 8.0 m front, 5.0 m surround, 2.5 m ceiling
Suggested Genelec System:
- Main LCR: 3 x 1336
- Surround: 16 x S360 or 1336DF
- Ceiling: 12 x 6501 or 5360
- Subwoofer (LFE): 3 x 7382

Mounting Accessories:
- 8 x 8000-402 adjustable wall mount
- 8 x S360-436H U-bracket mounting adapter
- 4 x 8000-436 short ceiling mount

Cabling:
- Analog or digital, e.g. 16 x AES/EBU XLR cables

Mounting Accessories:
- 10 x 8000-402 adjustable wall mount
- 10 x S360-436H U-bracket mounting adapter
- 8 x 8000-444 long ceiling mount

Cabling:
- Analog or digital, e.g. 23 x AES/EBU XLR cables

Options:
- Bass management and subwoofers for side and rear channels, e.g. 2 x 7380. In the case of digital interfacing, consider 2 x 9301 interface units.

Mounting Accessories:
- 16 x 8000-402 adjustable wall mount
- 16 x S360-436H U-bracket mounting adapter
- 12 x 8000-444 long ceiling mount

Cabling:
- Analog or digital, e.g. 35 x AES/EBU XLR cables

Options:
- Bass management and subwoofers for side and rear channels, e.g. 4 x 7380. In the case of digital interfacing, consider 2 x 9301 units.
GLM Software: Configuration, Calibration and Control for Immersive Systems

Configuration and Calibration

To ensure reference listening conditions and good translation between rooms, any monitor in any room needs to be adjusted after placement. Genelec’s GLM application offers a sophisticated, easy to use solution, based on decades of research combined with data from thousands of listening rooms.

When setting up an immersive system, both placement and adjustment are paramount. Even identical monitors can otherwise exhibit a very different tonal balance, as shown on examples 1-3 on the illustration. They may also be at different distances from the listener, thereby causing further difficulty with level, delay and phase. During setup, GLM easily compensates for such problems, and it allows further adjustment by the user to accommodate standards (such as X-curve) or personal preferences.

Monitor Control

In daily operation, GLM doubles as a comprehensive Mac or PC-based monitor controller that immediately scales with your setup requirements; for instance if changing from stereo to 5.1, 7.1, 22.2, 19.1.12 or higher.

GLM enables you to calibrate your listening level to various loudness standards, and invoke solo and mutes. You can switch between formats, and invoke solo and mutes. You can switch between formats, and it allows further adjustment by the user to accommodate standards (such as X-curve) or personal preferences.

In-Room Product Performance

Listening Distance and Sound Pressure Level

The distance between you and your monitors is crucial, both in terms of performance and the SPL delivered to the listening position. Use the table here to compare the SPL capabilities of Genelec SAM monitors.

- **Room volumes (m³):**
 - 140 m³ (4.900 ft³)
 - 125 m³ (4.420 ft³)
 - 110 m³ (3.900 ft³)
 - 105 m³ (3.650 ft³)
 - 95 m³ (3.350 ft³)
 - 75 m³ (2.650 ft³)
 - 65 m³ (2.300 ft³)

- **Listening Distances:**
 - 0.5 m (1')
 - 1.5 m (4.9')
 - 2 m (6.5')
 - 2.5 m (8.2')
 - 3 m (9.8')
 - 3.5 m (11.5')
 - 4 m (13.1')
 - 5 m (16.4')
 - 6 m (19.7')
 - 7 m (23.0')

- **SPL at Monitors:**
 - 0 dB (0.02 NPa)
 - 1 dB (0.02 NPa)
 - 2 dB (0.02 NPa)
 - 3 dB (0.02 NPa)
 - 5 dB (0.02 NPa)
 - 10 dB (0.02 NPa)
 - 15 dB (0.02 NPa)

- **Room impulse:**
 - 0.02 NPa (20 mPa)
 - 0.01 NPa (10 mPa)
 - 0.005 NPa (5 mPa)

- **Room volume:**
 - 140 m³ (4.900 ft³)
 - 125 m³ (4.420 ft³)
 - 110 m³ (3.900 ft³)
 - 105 m³ (3.650 ft³)
 - 95 m³ (3.350 ft³)
 - 75 m³ (2.650 ft³)
 - 65 m³ (2.300 ft³)

- **Listening angles:**
 - Front 90°
 - Front 60°
 - Front 30°
 - Front 15°
 - Rear 15°
 - Rear 30°
 - Rear 60°
 - Rear 90°

- **Room conditions:**
 - Standard
 - Personal
 - Classical

- **Listening distances:**
 - 1.5 m (4.9')
 - 2 m (6.5')
 - 2.5 m (8.2')
 - 3 m (9.8')
 - 3.5 m (11.5')
 - 4 m (13.1')
 - 5 m (16.4')
 - 6 m (19.7')
 - 7 m (23.0')

- **Room volumes:**
 - 140 m³ (4.900 ft³)
 - 125 m³ (4.420 ft³)
 - 110 m³ (3.900 ft³)
 - 105 m³ (3.650 ft³)
 - 95 m³ (3.350 ft³)
 - 75 m³ (2.650 ft³)
 - 65 m³ (2.300 ft³)

- **Listening angles:**
 - Front 90°
 - Front 60°
 - Front 30°
 - Front 15°
 - Rear 15°
 - Rear 30°
 - Rear 60°
 - Rear 90°
Direct Sound Dominance

The balance between direct and reverberant sound has a profound influence on how your mixes will sound. The table shown will help you identify the optimum range of listening distances for the Genelec SAM range.

<table>
<thead>
<tr>
<th>Room volume</th>
<th>Room reverbation time (RT60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Recommended Distances</td>
<td>When the distance to the monitor is too short, summing of sound from multiple drivers is not occurring as designed, and this affects the accuracy of the sound stage and stereo imaging.</td>
</tr>
<tr>
<td>Direct Sound Dominates</td>
<td>Within this distance the direct sound from the monitor has a higher level than the reverberant sound in the room. Placing the monitor within this distance range is advantageous in minimizing the tendency of the room reverberation to change the character of the monitored sound and affect the precision of stereo imaging.</td>
</tr>
<tr>
<td>Critical distance</td>
<td>The critical distance is the distance where the direct sound from the monitor and the reverberant sound in the room have equal level in midrange frequencies (approximately between 200 Hz and 4 kHz). The critical distance is affected by the room volume, the room reverberation time (RT60), and the directivity of the monitor.</td>
</tr>
<tr>
<td>Reverberant sound dominates</td>
<td>At these distances the reverberant sound in the room has a higher level than the direct sound from the monitor. The balance between the direct and reverberant sound is affected by the room volume and the reverbation time.</td>
</tr>
</tbody>
</table>

Our Range of Monitors

Because Genelec offers such a wide range of monitors and subwoofers - each with the same consistently precise, neutral characteristics - it means that we can provide a professional solution for any type of immersive application, with a corresponding range of mounting accessories that is unrivalled in the industry.

From the smallest compact nearfield model via midfield three-ways to the largest full-size main monitor, whatever your room size, format and SPL requirements you can rely on a Genelec solution that will deliver exquisite and reliable performance day-in, day-out.

And because great translation between rooms and systems is so critical, it’s reassuring to know that “when you get it right on a Genelec, it’s right everywhere.”

To see our complete range, please visit www.genelec.com.